For the following equation, determine the values of the missing entries. Reduce all fractions to lowest terms.
x2 + y2 = 49
Note: Each column in the table represents an ordered pair. If multiple solutions exist, you only need to identify one.
Table:
X 0 [ ] 16 9 [ ]
Y [ ] √2 [ ] [ ] -√5

Respuesta :

Answer:

Following are the solution to the given question:

Step-by-step explanation:

Given:

[tex]\to x^2+y^2=49[/tex]

When

 [tex]x=0\\\\0^2+y^2=49\\\\y^2=49\\\\y= \pm 7[/tex]

So, order pass [tex](0,\pm 7)[/tex]

Similarly When  

[tex]y=0\\\\x^2+0^2=49\\\\x^2=49\\\\x= \pm 7[/tex]

So, order pass [tex](\pm 7,0)[/tex]  

[tex]x \ \ \ \ \ \ \ 7 \ \ \ \ \ \ \ -7\ \ \ \ \ \ \ 0 \ \ \ \ \ \ \ 0 \\\\y \ \ \ \ \ \ \ 0 \ \ \ \ \ \ \ 0 \ \ \ \ \ \ \ 7 \ \ \ \ \ \ \ -7 \\\\[/tex]