Respuesta :

Answer:

[tex]y =11(6)^x[/tex]

Step-by-step explanation:

Given

[tex](x_1,y_1) = (0,11)[/tex]

[tex](x_2,y_2) = (2,396)[/tex]

Required

The exponential function

This is represented as:

[tex]y = ab^x[/tex]

In [tex](x_1,y_1) = (0,11)[/tex], we have:

[tex]11 = ab^0[/tex]

[tex]11 = a*1[/tex]

[tex]a = 11[/tex]

So, we have:

[tex]y = ab^x[/tex]

[tex]y = 11b^x[/tex]

In [tex](x_2,y_2) = (2,396)[/tex], we have:

[tex]396 = 11 * b^2[/tex]

Divide both sides by 11

[tex]36 = b^2[/tex]

Taks square roots

[tex]6 = b\\\\b=6[/tex]

So, we have:

[tex]y = 11b^x[/tex]

[tex]y =11(6)^x[/tex]