Respuesta :

Answer:

[tex]1 + cot^2 \theta[/tex]

Step-by-step explanation:

Given the expression;

[tex]\frac{tan^2\theta+1}{tan^2 \theta}[/tex]

Separating into partial fraction;

[tex]\frac{tan^2 \theta}{tan^2 \theta} + \frac{1}{tan^2 \theta}\\= 1 + \frac{1}{tan^2 \theta}\\\\[/tex]

Since [tex]\frac{1}{tan \theta} = cot \theta\\[/tex]

Hence the expression becomes;

[tex]1 + cot^2 \theta[/tex]