Respuesta :

Answer:

The horizontal component of the vector ≈ -16.06

The vertical component of the vector ≈ 19.15

Explanation:

The magnitude of the vector, [tex]\left | R \right |[/tex] = 25 units

The direction of the vector, θ = 130°

Therefore, we have;

The horizontal component of the vector, Rₓ = [tex]\left | R \right |[/tex] × cos(θ)

∴ Rₓ = 25 × cos(130°) ≈ -16.06

The horizontal component of the vector, Rₓ ≈ -16.06

The vertical component of the vector, R[tex]_y[/tex] = [tex]\left | R \right |[/tex] × sin(θ)

∴  R[tex]_y[/tex] = 25 × sin(130°) ≈ 19.15

The vertical component of the vector, R[tex]_y[/tex] ≈ 19.15

(The vector, R = Rₓ + R[tex]_y[/tex]

[tex]\underset{R}{\rightarrow}[/tex] = Rₓ·i + R[tex]_y[/tex]·j

∴ [tex]\underset{R}{\rightarrow}[/tex] ≈ -16.07·i + 19.15j)