1) Use SolidWorks (SW) FEA to apply a bending load of 600 lbf on the right end of the stepped shaft as shown below. This is the same geometry as H01. Estimate stress concentration factor Kt for bending from your FEA. Provide a hardcopy color plot of your FEA showing maximum von Mises stress.

Respuesta :

Solution :

Given :

L = 1 in

d = 0.75 in

D = 1 in

Fillet radius, r = 0.063 in

[tex]$K_{t_{bending}=\frac{\sigma_{FEA_{bending }}}{\sigma_{Nominal_{bending }}}$[/tex]

We know that :

[tex]$\sigma_{b} = \frac{32M}{\pi d^3}$[/tex]

[tex]$\sigma_{b} = \frac{32 \times (2998.63 \times 25.4)}{\pi (0.75 \times 25.4)^3}$[/tex]

    [tex]$=112.27 \ N/mm^2$[/tex]

[tex]$\sigma_{FEA} = 1.3 \times 10^8 \ N/m^2$[/tex]

         [tex]$=1.3 \times 10^8 \times 10^{-6}$[/tex]

         [tex]$=1.3 \times 10^2$[/tex]   MPa

         = 130 MPa

Therefore, the stress concentration factor is :

[tex]$k_t=\frac{130}{112.27}$[/tex]

   = 1.157922

Ver imagen AbsorbingMan