Respuesta :
Answer:
[tex]x = 6.99in[/tex]
Step-by-step explanation:
Given
[tex]l =2in[/tex]
[tex]Volume = 72.66in^3[/tex]
See attachment for prism
Required
Find x
The prism has a regular hexagon base
The base area is calculated as:
[tex]Base\ Area= \frac{3\sqrt 3}{2}l^2[/tex]
This gives:
[tex]Base\ Area= \frac{3\sqrt 3}{2} * 2^2[/tex]
[tex]Base\ Area= \frac{3\sqrt 3}{2} * 4[/tex]
[tex]Base\ Area= 3\sqrt 3 * 2[/tex]
[tex]Base\ Area= 6\sqrt 3[/tex]
Side x represents the height.
So, we have:
[tex]Volume = Base\ Area*x[/tex]
Make x the subject
[tex]x = \frac{Volume }{ Base\ Area}[/tex]
[tex]x = \frac{72.66in^3}{6\sqrt 3 in^2}[/tex]
[tex]x = \frac{72.66}{6\sqrt 3}in[/tex]
[tex]x = \frac{12.11}{\sqrt 3}in[/tex]
[tex]x = 6.99in[/tex] --- approximated
