Respuesta :

Answer:

Hello! answer: 268 square meters

Step-by-step explanation:

To find the total surface area you find the area of each face then add them up so...

10 × 3 = 30

10 × 3 = 30

8 × 3 = 24

8 × 3 = 24

10 × 8 = 80

10 × 8 = 80

Now that I found the area for each face I will just add them up so...

30 + 30 + 24 + 24 + 80 + 80 = 268 therefore the area is 268 square meters Hope that helps!

Answer :

[tex] \large\mathrm {\boxed{ \boxed{268 \: \: m {}^{2} }}}[/tex]

Solution :

The above pieces will form a cuboid, having dimensions :

[tex] \mathrm{\longrightarrow length = 10 \: m}[/tex]

[tex] \mathrm{\longrightarrow width = 8 \: m}[/tex]

[tex] \mathrm{\longrightarrow height = 3 \: m}[/tex]

We know that Surface area of Cuboid is :

[tex] \large \longmapsto \mathrm{{2(lw + wh + lh)}}[/tex]

Let's solve,

[tex]\longrightarrow2[(10 \times 8) + (8 \times 3) + (10 \times 3)][/tex]

[tex]\longrightarrow2[80 + 24 + 30][/tex]

[tex]\longrightarrow2 \times 134[/tex]

[tex]\longrightarrow268 \: m {}^{2} [/tex]

[tex] \circ { \underline{ \boxed{ \sf{ \color{green}{ \mathfrak{hope \: \: it \: \: helps \: \: you.....}}}}}}∘[/tex]