Respuesta :

B. [tex]2( \sqrt{x} + \sqrt{x - 2} )[/tex] ✅

Step-by-step explanation:

[tex] \frac{4}{ \sqrt{x} - \sqrt{x - 2} } \\\\ = \frac{4}{ \sqrt{x} - \sqrt{x - 2} } \times \frac{ \sqrt{x} + \sqrt{x - 2} }{ \sqrt{x} + \sqrt{x - 2} } \\ \\ = \frac{4( \sqrt{x}) + 4( \sqrt{x - 2} )}{( { \sqrt{x} )}^{2} - { (\sqrt{x - 2} })^{2} } \\ \\ [∵(a + b)(a - b) = {a}^{2} - {b}^{2} ] \\ \\ = \frac{4 \sqrt{x} + 4 \sqrt{x - 2} }{x - (x - 2)} \\ \\ = \frac{4 \sqrt{x} + 4 \sqrt{x - 2} }{x - x + 2} \\ \\ = \frac{4( \sqrt{x} + \sqrt{x - 2} ) }{ 2} \\ \\= 2( \sqrt{x} + \sqrt{x - 2} )[/tex]

[tex]\large\mathfrak{{\pmb{\underline{\orange{Mystique35 }}{\orange{♡}}}}}[/tex]