Respuesta :

Answer:

The base is: [tex]3 \sqrt[3]{4}[/tex]

Step-by-step explanation:

Given

[tex]f(x) = \frac{1}{4}(\sqrt[3]{108})^x[/tex]

Required

The base

Expand 108

[tex]f(x) = \frac{1}{4}(\sqrt[3]{3^3 * 4})^x[/tex]

Rewrite the exponent as:

[tex]f(x) = \frac{1}{4}(3^3 * 4)^\frac{1}{3}^x[/tex]

Expand

[tex]f(x) = \frac{1}{4}(3^3^\frac{1}{3} * 4^\frac{1}{3})^x[/tex]

[tex]f(x) = \frac{1}{4}(3 * 4^\frac{1}{3})^x[/tex]

Rewrite as:

[tex]f(x) = \frac{1}{4}(3 \sqrt[3]{4})^x[/tex]

An exponential function has the following form:

[tex]y=ab^x[/tex]

Where

[tex]b \to base[/tex]

By comparison:

[tex]b =3 \sqrt[3]{4}[/tex]

So, the base is: [tex]3 \sqrt[3]{4}[/tex]

Answer:

B

Step-by-step explanation:

good luck