Answer:
The base is: [tex]3 \sqrt[3]{4}[/tex]
Step-by-step explanation:
Given
[tex]f(x) = \frac{1}{4}(\sqrt[3]{108})^x[/tex]
Required
The base
Expand 108
[tex]f(x) = \frac{1}{4}(\sqrt[3]{3^3 * 4})^x[/tex]
Rewrite the exponent as:
[tex]f(x) = \frac{1}{4}(3^3 * 4)^\frac{1}{3}^x[/tex]
Expand
[tex]f(x) = \frac{1}{4}(3^3^\frac{1}{3} * 4^\frac{1}{3})^x[/tex]
[tex]f(x) = \frac{1}{4}(3 * 4^\frac{1}{3})^x[/tex]
Rewrite as:
[tex]f(x) = \frac{1}{4}(3 \sqrt[3]{4})^x[/tex]
An exponential function has the following form:
[tex]f(x)=ab^x[/tex]
Where
[tex]b \to base[/tex]
By comparison:
[tex]b =3 \sqrt[3]{4}[/tex]
So, the base is: [tex]3 \sqrt[3]{4}[/tex]