What is the simplest radical form of the expression?
(8x^7y^4)^2/3

Answer:
[tex]4x^4y^2\sqrt[3]{x^2y^2}[/tex]
Step-by-step explanation:
Recall that [tex]a^{(\frac{b}{c})}=\sqrt[c]{a^b}[/tex].
Therefore, we have:
[tex](8x^7y^4)^{\frac{2}{3}}=\sqrt[3]{(8x^7y^4)^2}[/tex]
Use the exponent property [tex](a^b)^c=a^{(b\cdot c)}[/tex] to simplify:
[tex](8x^7y^4)^{\frac{2}{3}}=\sqrt[3]{(8x^7y^4)^2}=\sqrt[3]{64x^{14}y^8}=\boxed{4x^4y^2\sqrt[3]{x^2y^2}}[/tex]