Respuesta :

Answer:

[tex]4x^4y^2\sqrt[3]{x^2y^2}[/tex]

Step-by-step explanation:

Recall that [tex]a^{(\frac{b}{c})}=\sqrt[c]{a^b}[/tex].

Therefore, we have:

[tex](8x^7y^4)^{\frac{2}{3}}=\sqrt[3]{(8x^7y^4)^2}[/tex]

Use the exponent property [tex](a^b)^c=a^{(b\cdot c)}[/tex] to simplify:

[tex](8x^7y^4)^{\frac{2}{3}}=\sqrt[3]{(8x^7y^4)^2}=\sqrt[3]{64x^{14}y^8}=\boxed{4x^4y^2\sqrt[3]{x^2y^2}}[/tex]

Otras preguntas