Respuesta :

Given:

The figure of a quadrilateral ABCD.

To find:

The perimeter of the quadrilateral ABCD.

Solution:

In an isosceles triangle, the two sides and base angles are congruent.

In triangle ABD,

[tex]\angle DAB\cong \angle ABD[/tex]               [Given]

[tex]\Delta ABD[/tex] is an isosceles triangle      [Base angle property]

[tex]AD=BD[/tex]                   [By definition of isosceles triangles]    

[tex]8=BD[/tex]                   ...(i)

In triangle BCD,

[tex]\angle BCD\cong \angle CDB\cong \angle CBD[/tex]        [Given]

All interior angles of the triangle BCD are congruent, so the triangle BCD is an equilateral triangle and all sides of the triangle area equal.

[tex]BC=CD=BD[/tex]

[tex]BC=CD=8[/tex]      [Using (i)]               ...(ii)

Now, the perimeter of quadrilateral ABCD is:

[tex]Perimeter=AB+BC+CD+AD[/tex]

[tex]Perimeter=11+8+8+8[/tex]

[tex]Perimeter=35[/tex]

Therefore, the perimeter of the quadrilateral ABCD is 35 units.