Respuesta :

As both the angles are linear, their sum is equal to 180°

i.e m<EFG+m<GFH = 180

=>( 2n+17 )+(4n+37) = 180

=> 6n + 54 = 180

=> 6n = 180-54

=>6n =126

=> n= 21

m<EFG = 2(21)+17 = 59°

m<GFH =4(21)+37 =121°

Given: ∠EFG and ∠GFH are a linear pair

We know that: Sum of the angles which make a linear pair should be equal to 180°

⇒  ∠EFG + ∠GFH = 180°

Given :

∠EFG = 2n + 17

∠GFH = 4n + 37

⇒  2n + 17 + 4n + 37 = 180°

⇒  6n + 54 = 180°

⇒  6n = 180 - 54

⇒  6n = 126

⇒  n = 21°

Substituting the value of n in ∠EFG and ∠GFH, We get:

⇒  ∠EFG = 2(21) + 17 = (42 + 17) = 59°

⇒  ∠GFH = 4(21) + 37 = (84 + 37) = 121°