Given:
The equation is:
[tex]270=3e^{2.4K}[/tex]
To find:
The solution for the given equation to the nearest hundredth.
Solution:
We have,
[tex]270=3e^{2.4K}[/tex]
Divide both sides by 3.
[tex]\dfrac{270}{3}=e^{2.4K}[/tex]
[tex]90=e^{2.4K}[/tex]
Taking ln on both sides, we get
[tex]\ln (90)=\ln e^{2.4K}[/tex]
[tex]\ln (90)=2.4K[/tex] [tex][\because \ln e^x=x][/tex]
Divide both sides by 2.4.
[tex]\dfrac{\ln (90)}{2.4}=K[/tex]
[tex]\dfrac{4.4998}{2.4}=K[/tex] [tex][\because \ln (90)\approx 4.4998][/tex]
[tex]1.874916667=K[/tex]
Round the value to the nearest hundredth (two decimal place)
[tex]K\approx 1.87[/tex]
Therefore, the value of K is 1.87.