Answer:
The series 64, 16, 4, 1 is convergent.
Step-by-step explanation:
Let be [tex]\{x_{1}, x_{2},...,x_{n}\}[/tex] the set of values of the series. A series is convergent if and only if:
[tex]\frac{x_{i + 1}}{x_{i}} < 1, \, \forall\,i\in \mathbb{N}[/tex] (1)
If we know that [tex]x_{1} = 64[/tex], [tex]x_{2} = 16[/tex], [tex]x_{3} = 4[/tex] and [tex]x_{4} = 1[/tex], then the convergence ratio of each pair of consecutive values are, respectively:
[tex]\frac{x_{2}}{x_{1}} = \frac{1}{4}[/tex], [tex]\frac{x_{3}}{x_{2}} = \frac{1}{4}[/tex], [tex]\frac{x_{4}}{x_{3}} = \frac{1}{4}[/tex]
Hence, the series 64, 16, 4, 1 is convergent.