Respuesta :

Answer:

[tex]x[/tex] would be [tex](1/3)[/tex] when [tex]y = 3[/tex].

Step-by-step explanation:

The question states that [tex]x[/tex] varies "inversely" as [tex]y^2[/tex]. In other words, there is a non-zero number [tex]a[/tex] (a constant) such that:

[tex]\displaystyle x = \frac{a}{y^2}[/tex].

The challenging part is to find the value of [tex]a[/tex] in this equation.

Given that [tex]x = 3[/tex] when [tex]y = -1[/tex], replace the [tex]x[/tex] in this equation with [tex]3[/tex] and [tex]y[/tex] with [tex](-1)[/tex]. This equation should still be valid:

[tex]\displaystyle 3 = \frac{a}{(-1)^{2}}[/tex].

Solve for [tex]a[/tex]:

[tex]a = 3 \times (-1)^2 = 3[/tex].

Hence, the relation between [tex]x[/tex] and [tex]y[/tex] becomes:

[tex]\displaystyle x = \frac{3}{y^2}[/tex].

Find the value of [tex]x[/tex] when [tex]y = 3[/tex] by replacing the [tex]y[/tex] in this equation with [tex]3[/tex].

[tex]\displaystyle x = \frac{3}{3^2} = \frac{1}{3}[/tex].

In other words, the value of [tex]x[/tex] would be [tex]\displaystyle \frac{1}{3}[/tex] when [tex]y = 3[/tex].