Respuesta :

The answer is b I think

The expression [tex]2- \dfrac{x-1}{x+2}[/tex]  is equivalent to [tex]1 + \dfrac{3}{x+2}[/tex].

We have to find, which equation is equivalent to the given expression.

The given expression is,

[tex]= 2- \dfrac{x-1}{x+2}[/tex]

To determine the equivalent expression following all the steps given below.

  • Step1; Taking LCM in the equation,

                   [tex]\rm = 2-\dfrac{x-1}{x+2}\\\\= \dfrac{2(x+2) - (x-1)}{x+2}\\\\= \dfrac{2x+4-x+1}{x+2}\\\\[/tex]

  • Step2; Solving the equation,

                    [tex]= \dfrac{2x+4-x+1}{x+2}\\\\= \dfrac{x+5}{x+2}\\\\[/tex]

  • Step3; rewrite the equation in the small factors,

                    [tex]=\dfrac{x+5}{x+2}\\\\= \dfrac{x+ 2+3}{x+2}\\\\[/tex]

  • Step4; By using partial fraction rewrite the equation,

                    [tex]= \dfrac{x+2}{x+2} + \dfrac{3}{x+2}\\\\= 1 + \dfrac{3}{x+2}[/tex]

Hence, The expression [tex]2- \dfrac{x-1}{x+2}[/tex]  is equivalent to [tex]1 + \dfrac{3}{x+2}[/tex].

For more details refer to the link given below.

https://brainly.com/question/2264568