Answer:
The right solution is "$966.27".
Explanation:
Given values are:
Coupon rate,
= 10%
Par value,
= $1000
Yield of maturity,
= 12%
then,
Coupon will be:
= [tex]1000\times 10 \ percent[/tex]
= [tex]1000\times 0.1[/tex]
= [tex]100[/tex] ($)
Now,
The present value of coupon will be:
= [tex]A\times \frac{(1-(1+r)^n)}{r}[/tex]
By putting the value, we get
= [tex]100\times \frac{1-(1.12)^{-2}}{0.12}[/tex]
= [tex]100\times \frac{1-0.7971}{0.12}[/tex]
= [tex]100\times \frac{0.2029}{0.12}[/tex]
= [tex]169.08[/tex] ($)
The present value of par value will be:
= [tex]\frac{1000}{(1+12 \ percent)^2}[/tex]
= [tex]\frac{1000}{(1.12)^2}[/tex]
= [tex]797.19[/tex] ($)
hence,
The price of bond will be:
= [tex]Present \ value \ of \ coupon+Present \ value \ of \ par \ value[/tex]
= [tex]169.08+797.19[/tex]
= [tex]966.27[/tex] ($)