contestada

If a coupon bond has two years to​ maturity, a coupon rate of 10 ​%, a par value of ​$1000 ​, and a yield to maturity of 12 ​%, then the coupon bond will sell for ​$nothing . ​ (Round your response to the nearest two decimal​ place) The price of a bond and its yield to maturity are ▼ positively related negatively related unrelated .

Respuesta :

Answer:

The right solution is "$966.27".

Explanation:

Given values are:

Coupon rate,

= 10%

Par value,

= $1000

Yield of maturity,

= 12%

then,

Coupon will be:

= [tex]1000\times 10 \ percent[/tex]

= [tex]1000\times 0.1[/tex]

= [tex]100[/tex] ($)

Now,

The present value of coupon will be:

= [tex]A\times \frac{(1-(1+r)^n)}{r}[/tex]

By putting the value, we get

= [tex]100\times \frac{1-(1.12)^{-2}}{0.12}[/tex]

= [tex]100\times \frac{1-0.7971}{0.12}[/tex]

= [tex]100\times \frac{0.2029}{0.12}[/tex]

= [tex]169.08[/tex] ($)

The present value of par value will be:

= [tex]\frac{1000}{(1+12 \ percent)^2}[/tex]

= [tex]\frac{1000}{(1.12)^2}[/tex]

= [tex]797.19[/tex] ($)

hence,

The price of bond will be:

= [tex]Present \ value \ of \ coupon+Present \ value \ of \ par \ value[/tex]

= [tex]169.08+797.19[/tex]

= [tex]966.27[/tex] ($)