Respuesta :

Answer:

See Below.

Step-by-step explanation:

We want to use the Squeeze Theorem to show that:

[tex]\displaystyle \lim_{x \to 0}\left(x^2\sin\left(\frac{2}{x}\right)\right)=0[/tex]

Recall that according to the Squeeze Theorem, if:

[tex]\displaystyle g(x)\leq f(x) \leq h(x)[/tex]

And:

[tex]\displaystyle \lim_{x\to c}g(x) =\lim_{x\to c}h(x) = L[/tex]

Then:

[tex]\displaystyle \lim_{x\to c}f(x)=L[/tex]

Recall that the value of sine is always ≥ -1 and ≤ 1. Hence:

[tex]\displaystyle -1 \leq \sin\left(\frac{2}{x}\right) \leq 1[/tex]

We can multiply both sides by x². Since this value is always positive, we do not need to change the signs. Hence:

[tex]\displaystyle -x^2\leq x^2\sin\left(\frac{2}{x}\right)\leq x^2[/tex]

Let g = -x², h = x², and f = x²sin(2 / x). We can see that:

[tex]\displaystyle \lim_{x \to 0}g(x) = \lim_{ x \to 0}h(x) = 0[/tex]

And since g(x) ≤ f(x) ≤ h(x), we can conclude using the Squeeze Theorem that:

[tex]\displaystyle \lim_{x \to 0}f(x) = \lim_{x \to 0}x^2\sin\left(\frac{2}{x}\right)=0[/tex]