Given:
Radius of a cylinder = 5 units.
Surface area of the cylinder = [tex]160\pi[/tex]
To find:
The height of the right cylinder.
Solution:
Surface area of a cylinder is:
[tex]A=2\pi rh+2\pi r^2[/tex]
Where, r is radius and h is the height of the cylinder.
Putting [tex]r=5, A=160\pi[/tex] in the above formula, we get
[tex]160\pi =2\pi (5)(h)+2\pi (5)^2[/tex]
[tex]160\pi =10\pi h+2\pi (25)[/tex]
[tex]160\pi =10\pi h+50\pi [/tex]
Subtract [tex]50\pi[/tex] from both sides.
[tex]160\pi -50\pi=10\pi h [/tex]
[tex]110\pi=10\pi h [/tex]
Divide both sides by [tex]10\pi[/tex].
[tex]\dfrac{110\pi}{10\pi}=h[/tex]
[tex]11=h[/tex]
Therefore, the height of the cylinder is 11 units.