Respuesta :

Answer:

[tex]-\frac{3 \cdot cos^2x}{(1+sinx)^3}[/tex]

Step-by-step explanation:

[tex]y = (\frac{cosx}{1+sinx})^3\\\\\frac{dy}{dx} = 3 \cdot (\frac{cosx}{1+sinx})^2 \cdot \frac{dy}{dx}(\frac{cosx}{1+sinx})[/tex]                        [tex][ y = x^n\ \ \ => \ \ \ \frac{dy}{dx} = b \cdot x^{n-1} \ ][/tex]

    [tex]= 3 \cdot (\frac{cosx}{1+sinx})^2 \cdot \frac{(1+sin x(-sinx) - cosx(cosx)}{(1+sinx)^2}\\\\[/tex]     [tex][\ \frac{u}{v} = \frac{v \dcot u'- u \cdot v'}{v^2}\ ][/tex]

    [tex]= 3 \cdot (\frac{cosx}{1+sinx})^2 \cdot \frac{-sin x-sin^2x- cos^2x}{(1+sinx)^2}\\\\= 3 \cdot (\frac{cosx}{1+sinx})^2 \cdot \frac{-sin x- (sin^2x+ cos^2x)}{(1+sinx)^2}\\\\= 3 \cdot (\frac{cosx}{1+sinx})^2 \cdot \frac{-sin x-1}{(1+sinx)^2}\\\\= 3 \cdot (\frac{cosx}{1+sinx})^2 \cdot \frac{-1 \cdot(sin x+1)}{(1+sinx)^2}\\\\= 3 \cdot (\frac{cosx}{1+sinx})^2 \cdot \frac{-1}{(1+sinx)}\\\\[/tex]

   [tex]= -3 \cdot \frac{cos^2x}{(1+sinx)^3}[/tex]