In ΔSTU, \text{m}\angle S = (2x+10)^{\circ}m∠S=(2x+10) ∘ , \text{m}\angle T = (3x-9)^{\circ}m∠T=(3x−9) ∘ , and \text{m}\angle U = (6x-19)^{\circ}m∠U=(6x−19) ∘ . Find \text{m}\angle T.M∠T.

Respuesta :

Answer: [tex]\text{m}\angle T=45^{\circ}[/tex]

Step-by-step explanation:

Given: In ΔSTU, [tex]\text{m}\angle S = (2x+10)^{\circ}[/tex] , [tex]\text{m}\angle T = (3x-9)^{\circ}[/tex], [tex]\text{m}\angle U = (6x-19)^{\circ}[/tex]

To find: [tex]\text{m}\angle T[/tex].

We know that the sum of all the angles of a triangle is [tex]180^{\circ}[/tex].

In ΔSTU,

[tex]\text{m}\angle S+\text{m}\angle T+\text{m}\angle U=180^{\circ}\\\\ 2x+10+3x-9+6x-19=180\\\\ 11x-18=180\\\\11x =180+18\\\\11x=198\\\\x=\frac{198}{11}\\\\ x=18[/tex]

[tex]\text{m}\angle T = (3(18)-9)^{\circ}\\\\=(54-9)^{\circ}\\\\= 45^{\circ}[/tex]

Hence, [tex]\text{m}\angle T=45^{\circ}[/tex]