Answer:
4082
Step-by-step explanation:
Given
The composite object
Required
The volume
The object is a mix of a cone and a hemisphere
Such that:
Cone
[tex]r = 10cm[/tex] ---- radius (r = 20/2)
[tex]h = 19cm[/tex]
Hemisphere
[tex]r=10cm[/tex]
The volume of the cone is:
[tex]V_1 = \frac{1}{3}\pi r^2h[/tex]
[tex]V_1 = \frac{1}{3}\pi * 10^2 * 19[/tex]
[tex]V_1 = \frac{1900}{3}\pi[/tex]
The volume of the hemisphere is:
[tex]V_2 = \frac{2}{3}\pi r^3[/tex]
[tex]V_2 = \frac{2}{3}\pi 10^3[/tex]
[tex]V_2 = \frac{2000}{3}\pi[/tex]
So, the volume of the object is:
[tex]V = V_1 + V_2[/tex]
[tex]V = \frac{1900}{3}\pi + \frac{2000}{3}\pi[/tex]
[tex]V = \frac{3900}{3}\pi[/tex]
[tex]V = 1300\pi[/tex]
[tex]V = 1300 * 3.14[/tex]
[tex]V = 4082[/tex]