The table of values represents a polynomial function f(x).

How much greater is the average rate of change over the interval [5, 7] than the interval [2, 4] ?

x f(x)
2 230
3 638
4 1048
5 3452
6 4568
7 5002
8 6294
Enter your answer in the box.

Respuesta :

Given:

The table of values of the function f(x).

To find:

How much greater is the average rate of change over the interval [5, 7] than the interval [2, 4]?

Solution:

The average rate of change of a function f(x) over the interval [a,b] is:

[tex]m=\dfrac{f(b)-f(a)}{b-a}[/tex]

The average rate of change over the interval [5, 7] is:

[tex]m_1=\dfrac{f(7)-f(5)}{7-5}[/tex]

[tex]m_1=\dfrac{5002-3452}{2}[/tex]

[tex]m_1=\dfrac{1550}{2}[/tex]

[tex]m_1=775[/tex]

The average rate of change over the interval [2,4] is:

[tex]m_2=\dfrac{f(4)-f(2)}{4-2}[/tex]

[tex]m_2=\dfrac{1048-230}{2}[/tex]

[tex]m_2=\dfrac{818}{2}[/tex]

[tex]m_2=409[/tex]

The difference between the average rate of change over the interval [5, 7] and the interval [2, 4] is:

[tex]Difference=m_1-m_2[/tex]

[tex]Difference=775-409[/tex]

[tex]Difference=366[/tex]

Therefore, the average rate of change over the interval [5, 7] is 366 more than the interval [2, 4].

Answer:

366

Step-by-step explanation:

I took the test lol