Respuesta :

Answer:

Using the property of intersecting secant:-

[tex](DE)(CE)=(FE)(LE)[/tex]

[tex](4)(x-1+14)=(5)(x-4+5)[/tex]

[tex]4(x+3)=(5x+1)[/tex]

[tex]4x+12=5x+5[/tex]

[tex]4x+-5x=5-12[/tex]

[tex]-x=-7[/tex]

[tex]x=7[/tex]

[tex]So, CD=x-1=7-1=6[/tex]

[tex]so,~your ~answer ~is ~B) ~6[/tex]

----------------------------

hope it helps...

have a great day!!

By intersecting secants theorem, the measure of CD is 6 units.

What is intersecting secants theorem?

The theorem states that when two secants intersect at an exterior point, the product of the one whole secant segment and its external segment is equal to the product of the other whole secant segment and its external segment.

For the given situation,

The diagram shows the circle with the two secants intersecting at the exterior point.

By intersecting secants theorem,

[tex](CE)(DE)=(LE)(FE)[/tex] -------- (1)

Here, CE = CD + DE

⇒ [tex]CE = (x-1)+4[/tex]

DE = 4

LE = LF + FE

⇒ [tex]LE = (x-4)+5[/tex]

FE = 5

On substituting the above values in 1,

⇒ [tex](x-1+4)(4)=(x-4+5)(5)[/tex]

⇒ [tex](x+3)(4)=(x+1)(5)[/tex]

⇒ [tex]4x+12=5x+5[/tex]

⇒ [tex]5x-4x=12-5[/tex]

⇒ [tex]x=7[/tex]

Thus CD = [tex]x-1[/tex]

⇒ [tex]7-1=6[/tex]

Hence we can conclude that by intersecting secants theorem, the measure of CD is 6 units.

Learn more about intersecting secants theorem here

https://brainly.com/question/9853828

#SPJ2