Respuesta :
Answer:
2
Step-by-step explanation:
f(x)= 2x^5-3x^3+2x^2+1
Let x=1
f(1)= 2(1)^5-3(1)^3+2(1)^2+1
= 2*1 -3*1+2(1) +1
= 2-3+2+1
2
Problem:
[tex] \tt{if \: \: f(x) = 2 {x}^{5} - 3{x}^{3} + 2 {x}^{2} + 1 \: \: then \: \: f(1) = ?}[/tex]
Let's try!
[tex]\quad \quad \quad \quad \tt{f(x) = 2 {x}^{5} - 3 {x}^{3} + 2 {x}^{2} + 1}[/tex]
[tex]\quad \quad \quad \quad \tt{f(x) = 2 {(1)}^{5} - 3 {(1)}^{3} + 2 {(1)}^{2} + 1}[/tex]
[tex]\quad \quad \quad \quad \tt{f(x) = 2 (1) - 3 (1) + 2 (1) + 1}[/tex]
[tex]\quad \quad \quad \quad \tt{f(x) = 2 - 3 + 2 + 1}[/tex]
[tex]\quad \quad \quad \quad \tt{f(x) = 2 - 3 +3}[/tex]
[tex]\quad \quad \quad \quad \tt{f(x) = 2 \: \: \cancel{ \color{red}- 3 +3}}[/tex]
[tex]\quad \quad \quad \quad \tt{f(x) = 2 }[/tex]
Hence, The answer is:
[tex]\quad \quad \quad \quad \huge\boxed{\tt{ \color{green}f(x) = 2 }}[/tex]
________
#LetsStudy
