Respuesta :

Answer:

2

Step-by-step explanation:

f(x)= 2x^5-3x^3+2x^2+1

Let x=1

f(1)= 2(1)^5-3(1)^3+2(1)^2+1

    = 2*1 -3*1+2(1) +1

     = 2-3+2+1

     2

Problem:

[tex] \tt{if \: \: f(x) = 2 {x}^{5} - 3{x}^{3} + 2 {x}^{2} + 1 \: \: then \: \: f(1) = ?}[/tex]

Let's try!

[tex]\quad \quad \quad \quad \tt{f(x) = 2 {x}^{5} - 3 {x}^{3} + 2 {x}^{2} + 1}[/tex]

[tex]\quad \quad \quad \quad \tt{f(x) = 2 {(1)}^{5} - 3 {(1)}^{3} + 2 {(1)}^{2} + 1}[/tex]

[tex]\quad \quad \quad \quad \tt{f(x) = 2 (1) - 3 (1) + 2 (1) + 1}[/tex]

[tex]\quad \quad \quad \quad \tt{f(x) = 2 - 3 + 2 + 1}[/tex]

[tex]\quad \quad \quad \quad \tt{f(x) = 2 - 3 +3}[/tex]

[tex]\quad \quad \quad \quad \tt{f(x) = 2 \: \: \cancel{ \color{red}- 3 +3}}[/tex]

[tex]\quad \quad \quad \quad \tt{f(x) = 2 }[/tex]

Hence, The answer is:

[tex]\quad \quad \quad \quad \huge\boxed{\tt{ \color{green}f(x) = 2 }}[/tex]

________

#LetsStudy

Ver imagen Аноним