Answer:
The mean absolute deviation is: 7.44
Step-by-step explanation:
Given
[tex]Scores: 98, 78, 84, 75, 91[/tex]
Required
The mean absolute deviation
First, calculate the mean
[tex]\bar x = \frac{\sum x}{n}[/tex]
[tex]\bar x = \frac{98+78+84+75+91}{5}[/tex]
[tex]\bar x = \frac{426}{5}[/tex]
[tex]\bar x = 85.2[/tex]
The mean absolute deviation (M) is:
[tex]M = \frac{1}{n}\sum|x - \bar x|[/tex]
So, we have:
[tex]M = \frac{1}{5}(|98 - 85.2|+|78 - 85.2|+|84 - 85.2|+|75 - 85.2|+|91 - 85.2|)[/tex]
[tex]M = \frac{1}{5}(|12.8|+|-7.2|+|-1.2|+|-10.2|+|5.8|)[/tex]
Remove absolute brackets
[tex]M = \frac{1}{5}(12.8+7.2+1.2+10.2+5.8)[/tex]
[tex]M = \frac{1}{5}*37.2[/tex]
[tex]M = 7.44[/tex]