Respuesta :

Answer:

[tex]Max\ Area = \frac{x^2}{16}[/tex]

Step-by-step explanation:

Given

[tex]P = x[/tex] ---- the perimeter of fencing

Required

The maximum area

Let

[tex]L \to Length[/tex]

[tex]W \to Width[/tex]

So, we have:

[tex]P = 2(L + W)[/tex]

This gives:

[tex]2(L + W) = x[/tex]

Divide by 2

[tex]L + W = \frac{x}{2}[/tex]

Make L the subject

[tex]L = \frac{x}{2} - W[/tex]

The area (A) of the fence is:

[tex]A = L * W[/tex]

Substitute [tex]L = \frac{x}{2} - W[/tex]

[tex]A = (\frac{x}{2} - W) * W[/tex]

Open bracket

[tex]A = \frac{x}{2}W - W^2[/tex]

Differentiate with respect to W

[tex]A' = \frac{x}{2} - 2W[/tex]

Set to 0

[tex]\frac{x}{2} - 2W = 0[/tex]

Solve for 2W

[tex]2W = \frac{x}{2}[/tex]

Solve for W

[tex]W = \frac{x}{4}[/tex]

Recall that:

[tex]L = \frac{x}{2} - W[/tex]

[tex]L = \frac{x}{2} - \frac{x}{4}[/tex]

[tex]L = \frac{2x- x}{4}[/tex]

[tex]L = \frac{x}{4}[/tex]

So, the maximum area is:

[tex]A = L * W[/tex]

[tex]A = \frac{x}{4}*\frac{x}{4}[/tex]

[tex]Max\ Area = \frac{x^2}{16}[/tex]