Respuesta :
Answer:
[tex]E(X_n)=\frac{2(n-1)}{27}[/tex]
[tex]E(y)=\frac{14}{9}[/tex]
Step-by-step explanation:
From the question we are told that:
Sample size n=9
Number of Green [tex]g=4[/tex]
Number of yellow [tex]y=4[/tex]
Number of white [tex]w=4[/tex]
Probability of Green Followed by yellow P(GY) ball
[tex]P(GY)=\frac{4}{9}*\frac{3}{9}[/tex]
[tex]P(GY)=\frac{4}{27}[/tex]
Generally the equations for when n is even is mathematically given by
[tex]Probability of success P(S)=\frac{4}{27}[/tex]
[tex]Probability of Failure P(F)=\frac{27-4}{27}[/tex]
[tex]Probability of Failure P(F)=\frac{23}{27}[/tex]
Therefore
[tex]E(X_n)=\frac{n}{2}*P[/tex]
[tex]E(X_n)=\frac{n}{2}*\frac{4}{27}[/tex]
[tex]E(X_n)=\frac{2n}{27}[/tex]
Generally the equations for when n is odd is mathematically given by
[tex]\frac{n-1}{2}[/tex]
[tex]E(X_n)=\frac{n-1}{2}*\frac{4}{27}[/tex]
[tex]E(X_n)=\frac{2(n-1)}{27}[/tex]
b)
Probability of drawing white ball
[tex]P(w)=\frac{2}{9}[/tex]
Therefore
[tex]E(w)=\frac{1}{p}[/tex]
[tex]E(w)=\frac{1}{\frac{2}{9}}[/tex]
[tex]E(w)=\frac{9}{2}[/tex]
Therefore
[tex]E(y)=[E(w)-1]\frac{4}{9}[/tex]
[tex]E(y)=[\frac{9}{2}-1]\frac{4}{9}[/tex]
[tex]E(y)=\frac{14}{9}[/tex]