Respuesta :

Answer:

21.4

Step-by-step explanation:

[tex]a^{2} + b^{2} = c^{2} \\13^{2} + 17^{2} = c^{2} \\169+ 289 = \sqrt{c^{2} } \\\sqrt{458} = \sqrt{c^{2} } \\21.4 = c[/tex]

[tex]\huge\bold{Given:}[/tex]

Length of the base "b" = 17 yd.

Length of the perpendicular "a" = 13 yd. [tex]\huge\bold{To\:find:}[/tex]

The length of the missing side, hypotenuse ("c").

[tex]\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}[/tex]

[tex]\boxed{C.\:21.4\:yd}[/tex]

[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]

Using Pythagoras theorem, we have

[tex]({perpendicular})^{2} + ({base})^{2} = ({hypotenuse})^{2} \\ \\⇢( {13 \: yd})^{2} + ( {17 \: yd})^{2} = {c}^{2} \\ \\⇢ {c}^{2} = 169 \: {yd}^{2} + 289 \: {yd}^{2} \\ \\⇢c = \sqrt{458 \: {yd}^{2} } \\ \\⇢c = 21.40 \: yd[/tex]

[tex]\sf\blue{Therefore,\:the\:length\:of\:the\:missing\:side\:"c"\:is\:21.4\:yd.}[/tex]

[tex]\huge\bold{To\:verify :}[/tex]

[tex]( {13 \: yd})^{2} + ( {17 \: yd})^{2} = {21.4 \: {yd}^{2} }\\ \\ ⇝169 \: {yd}^{2} + 289 \: {yd}^{2} = 457.96 \: {yd}^{2} \\ \\⇝458 \: {yd}^{2} = \: 458\: {yd}^{2} \\\\⇝ L.H.S.=R. H. S[/tex]

Hence verified. ✔

[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♡}}}}}[/tex]