NO LINKS OR ELSE YOU'LL BE REPORTED! Only answer if you're very good at Math.

Which expression is equivalent to (1/√y)^-1/5?

A: 5√y^2

B: 1/√y^5

C: 10√y

D: 1/10√y​

Respuesta :

Answer:

[tex]=\sqrt[10]{y}[/tex]

So option c is the correct answer

Step-by-step explanation:

[tex]\left(\frac{1}{\sqrt{y}}\right)^{\frac{-1}{5}}\\\mathrm{Apply\:exponent\:rule}:\quad \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c}\\\left(\frac{1}{\sqrt{y}}\right)^{\frac{-1}{5}}=\frac{1^{\frac{-1}{5}}}{\left(\sqrt{y}\right)^{\frac{-1}{5}}}\\=\frac{1^{\frac{-1}{5}}}{\left(\sqrt{y}\right)^{\frac{-1}{5}}}\\\mathrm{Apply\:rule}\:1^a=1\\1^{\frac{-1}{5}}=1\\=\frac{1}{\left(\sqrt{y}\right)^{\frac{-1}{5}}}\\\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{b}=-\frac{a}{b}[/tex]

[tex]=\frac{1}{\left(\sqrt{y}\right)^{-\frac{1}{5}}}\\\left(\sqrt{y}\right)^{-\frac{1}{5}}=\frac{1}{\sqrt[10]{y}}\\=\frac{1}{\frac{1}{\sqrt[10]{y}}}\\\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{1}{\frac{b}{c}}=\frac{c}{b}\\=\frac{\sqrt[10]{y}}{1}\\\mathrm{Apply\:rule}\:\frac{a}{1}=a\\=\sqrt[10]{y}[/tex]