Which exponential equation is equivalent to this logarithmic equation?
log5 x - log5 25 = 7

A. 7^9=x
B. 5^9=x
C. 7^5=x
D. 5^5=x

Respuesta :

Nayefx

Answer:

[tex] \displaystyle B)x = {5}^{9} [/tex]

Step-by-step explanation:

we are given a logarithmic equation

[tex] \displaystyle \log_{5}(x) - \log_{5}(25) = 7[/tex]

simplify the log:

[tex] \displaystyle \log_{5}(x) -2 = 7[/tex]

add 2 to both sides:

[tex] \displaystyle \log_{5}(x) = 9[/tex]

remember that,

[tex] \displaystyle \log_{a}(b) = c \iff {a}^{c} = b[/tex]

so we obtain:

[tex] \displaystyle x = {5}^{9} [/tex]

hence,

our answer is B)

Answer:

sorry I need points

[tex] \displaystyle B)x = {5}^{9} [/tex]