Respuesta :

[tex]answer = 3 {x}^{2} {e}^{ {x}^{3} } [/tex]

Ver imagen Wallind123
Nayefx

Answer:

[tex] \displaystyle f'(x) = 3x^2 {e}^{ {x}^{3} } [/tex]

Step-by-step explanation:

we would like to figure out the first derivative of the following:

[tex] \displaystyle f(x) = {e}^{x ^{3} } [/tex]

to do so take derivative In both sides:

[tex] \displaystyle f'(x) = \frac{d}{dx} {e}^{x ^{3} } [/tex]

to differentiate the above we can consider composite function derivation given by

[tex] \rm\displaystyle \frac{d}{dx} f(g(x)) = \frac{d}{dx} f'(g(x)) \times \frac{d}{dx} g'(x)[/tex]

let

g(x)=u

so we obtain:

[tex] \displaystyle f'(x) = \frac{d}{dx} {e}^{u} \times \frac{d}{dx} u[/tex]

substitute back:

[tex] \displaystyle f'(x) = \frac{d}{dx} {e}^{ {x}^{3} } \times \frac{d}{dx} {x}^{3} [/tex]

by using derivation rule we acquire:

[tex] \displaystyle f'(x) = 3x^2 {e}^{ {x}^{3} } [/tex]

and we are done!