Respuesta :

Answer:

1. [tex]2^{3}[/tex] x [tex]3^{6}[/tex]

ii. 18

b. -12

2. nth = a + (n - 1)d

ii. k = 103

3. [tex]x^{o}[/tex] = [tex]27^{o}[/tex]

4. Volume = 25.025 [tex]m^{3}[/tex]

Step-by-step explanation:

1. Prime factors of 5832 = 2 x 2 x 2 x 3 x 3 x 3 x 3 x 3 x 3

                                       = [tex]2^{3}[/tex] x [tex]3^{6}[/tex]

ii. [tex]\sqrt[3]{5832}[/tex] = 18

b. 2[tex]a^{2}[/tex] - 3[tex]b^{2}[/tex] + 3abc

a = 3, b = 2, c = -1

Thus,

2[tex](3)^{2}[/tex] - 3[tex](2)^{2}[/tex] + 3(3 x 2 x -1)

= 18 - 12 - 18

= -12

2. The required formula is;

nth = a + (n - 1)d

where: a is the first term, n is the number of terms in the sequence and d is the common difference.

b. kth term = 304, then

304 = -2 + (k - 1) 3

      = -2 + 3k -3

      = 3k - 5

3k = 304 + 5

3k =  309

k = [tex]\frac{309}{3}[/tex]

  = 103

k = 103

3. Comparing <DAB and < EBC;

<DAB ≅ <EBC = [tex]x^{o}[/tex]

<BEC = [tex]90^{o}[/tex] (right angle property)

<C = [tex]63^{o}[/tex]

Thus,

<B + <C + <E = [tex]180^{o}[/tex] (sum of angles in a triangle)

[tex]x^{o}[/tex] + [tex]63^{o}[/tex] + [tex]90^{o}[/tex] = [tex]180^{o}[/tex]

[tex]x^{o}[/tex] + 153 = [tex]180^{o}[/tex]

[tex]x^{o}[/tex] = 180 - 153

   = 27

[tex]x^{o}[/tex] = [tex]27^{o}[/tex]

4. Volume of a cylinder = [tex]\pi[/tex][tex]r^{2}[/tex]h

where r is the radius and h is the height of the cylinder.

Diameter = 3.5 m, h = 2.6 m

r = [tex]\frac{3.5}{2}[/tex]

r = [tex]\frac{7}{4}[/tex] m

So that,

Volume = [tex]\frac{22}{7}[/tex] x [tex](\frac{7}{4}) ^{2}[/tex] x 2.6

             = [tex]\frac{22}{7}[/tex] x [tex]\frac{49}{16}[/tex] x [tex]\frac{13}{5}[/tex]

             = 25[tex]\frac{1}{40}[/tex]

Volume = 25.025 [tex]m^{3}[/tex]