Answer:
[tex]\mathbf{f_o =1.87 \times 10^{11} \ Hz}[/tex]
Explanation:
From the given information:
The elastic potential energy can be calculated by using the formula:
[tex]U_o = \dfrac{1}{2}kR_o^2[/tex]
Making K the subject;
[tex]K = \dfrac{2 U_o}{R_o^2}[/tex]
[tex]k = \dfrac{2\times 1.68 \times 10^{-21}}{(3.82\times 10^{-10})^2}[/tex]
k = 2.3 × 10⁻² N/m
Now; the frequency of the small oscillation can be determined by using the formula:
[tex]f_o = \dfrac{1}{2 \pi}\sqrt{\dfrac{k}{m}}[/tex]
where;
m = mass of each atom = 1.66 × 10⁻²⁶ kg
[tex]f_o = \dfrac{1}{2 \pi}\sqrt{\dfrac{2.3 \times 10^{-2} N/m}{1.66 \times 10^{-26} \ kg}}[/tex]
[tex]\mathbf{f_o =1.87 \times 10^{11} \ Hz}[/tex]