Answer:
x = 7 , -1
Step-by-step explanation:
SOLUTION :-
[tex]4(x-3)^2-11 = 53[/tex]
[tex]=> 4(x-3)^2-11+11=53+11[/tex]
[tex]=> 4(x-3)^2 = 64[/tex]
[tex]=> \frac{4(x-3)^2}{4} = \frac{64}{4}[/tex]
[tex]=> (x-3)^2 = 16[/tex]
[tex]=> \sqrt{(x-3)^2} = \sqrt{16}[/tex]
[tex]=> x-3 = +4 \; or -4[/tex]
Here , x will have two values -
1) [tex]x-3 = 4[/tex]
[tex]=> x = 4 + 3 = 7[/tex]
2) [tex]x - 3 = -4[/tex]
[tex]=> x = -4 + 3 = -1[/tex]
VERIFICATION :-
When x = 7 ,
[tex]4(x-3)^2 - 11 = 4(7 - 3)^2 - 11[/tex]
[tex]= 4 \times 4^2 - 11[/tex]
[tex]= 4 \times 16 - 11[/tex]
[tex]= 64 - 11[/tex]
[tex]= 53[/tex]
When x = -1 ,
[tex]4(x-3)^2 - 11 = 4(-1 - 3)^2 - 11[/tex]
[tex]= 4 \times (-4)^2 - 11[/tex]
[tex]= 4 \times 16 - 11[/tex]
[tex]= 64 - 11[/tex]
[tex]= 53[/tex]