Find the indicated area of the sector surrounded in bold.

Answer:
75.36 yd² (≈ 75.4 yd²)
Step-by-step explanation:
GIVEN :-
TO FIND :-
GENERAL FORMULAE TO BE USED IN THI QUESTION :-
Lets say there's an arc which subtends θ angle in the center of the circle & radius of the circle is 'r'.
Area of the sector = [tex]\frac{\theta}{360} \times \pi r^2[/tex]
SOLUTION :-
Area of the sector = [tex]\frac{\theta}{360} \times \pi r^2[/tex]
[tex]= \frac{135}{360} \times \pi (8)^2[/tex]
[tex]= \frac{3}{8} \times 64 \times 3.14[/tex]
[tex]= 3 \times 8 \times 3.14[/tex]
[tex]=75.36 \; yd^2[/tex]