Respuesta :

Answer:

75.36 yd² (≈ 75.4 yd²)

Step-by-step explanation:

GIVEN :-

  • Angle subtended by the arc at center of circle (θ) = 135°
  • Radius of the circle = 8 yd

TO FIND :-

  • Area of the sector

GENERAL FORMULAE TO BE USED IN THI QUESTION :-

Lets say there's an arc which subtends θ angle in the center of the circle & radius of the circle is 'r'.

Area of the sector = [tex]\frac{\theta}{360} \times \pi r^2[/tex]

SOLUTION :-

Area of the sector = [tex]\frac{\theta}{360} \times \pi r^2[/tex]

                              [tex]= \frac{135}{360} \times \pi (8)^2[/tex]

                              [tex]= \frac{3}{8} \times 64 \times 3.14[/tex]

                              [tex]= 3 \times 8 \times 3.14[/tex]

                              [tex]=75.36 \; yd^2[/tex]