Solve for b. b= V [?] 12 5 b Pythagorean Theorem: a2 + b2 = c2 Enter

[tex]\huge\bold{Given:}[/tex]
Length of the perpendicular "[tex]a[/tex]" = 5.
Length of the hypotenuse "[tex]c[/tex]" = 12.
[tex]\huge\bold{To\:find:}[/tex]
The length of the missing side ''[tex]b[/tex]".
[tex]\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}[/tex]
The length of the missing side (base) "[tex]b[/tex]" is [tex]\boxed{√119}[/tex].
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]
Using Pythagoras theorem, we have
[tex]({perpendicular})^{2} + ({base})^{2} = ({hypotenuse})^{2} \\ \\⇢ {a}^{2} + {b}^{2} = {c}^{2} \\\\ ⇢ {5}^{2} + {b}^{2} = {12}^{2} \\ \\⇢25 + {b}^{2} = 144 \\ \\⇢ {b}^{2} = 144 - 25 \\ \\⇢ {b}^{2} = 119 \\ \\⇢b = \sqrt{119} [/tex]
[tex]\sf\blue{Therefore,\:the\:length\:of\:the\:missing\:side\:"b"\:is\:√119.}[/tex]
[tex]\huge\bold{To\:verify :}[/tex]
[tex] {5}^{2} + { \sqrt{119} }^{2} = {12}^{2} \\\\ ⇝25 + 119 = 144 \\ \\⇝144 = 144 \\ \\⇝L.H.S.=R. H. S[/tex]
Hence verified. ✔
[tex]\large\mathfrak{{\pmb{\underline{\orange{Mystique35 }}{\orange{♡}}}}}[/tex]