Respuesta :

Given:

15. [tex]\log_{\frac{1}{2}}\left(\dfrac{1}{2}\right)[/tex]

17. [tex]\log_{\frac{3}{4}}\left(\dfrac{4}{3}\right)[/tex]

19. [tex]2^{\log_2100}[/tex]

To find:

The values of the given logarithms by using the properties of logarithms.

Solution:

15. We have,

[tex]\log_{\frac{1}{2}}\left(\dfrac{1}{2}\right)[/tex]

Using property of logarithms, we get

[tex]\log_{\frac{1}{2}}\left(\dfrac{1}{2}\right)=1[/tex]         [tex][\because \log_aa=1][/tex]

Therefore, the value of [tex]\log_{\frac{1}{2}}\left(\dfrac{1}{2}\right)[/tex] is 1.

17. We have,

[tex]\log_{\frac{3}{4}}\left(\dfrac{4}{3}\right)[/tex]

Using properties of logarithms, we get

[tex]\log_{\frac{3}{4}}\left(\dfrac{4}{3}\right)=-\log_{\frac{3}{4}}\left(\dfrac{3}{4}\right)[/tex]                    [tex][\because \log_a\dfrac{m}{n}=-\log_a\dfrac{n}{m}][/tex]

[tex]\log_{\frac{3}{4}}\left(\dfrac{4}{3}\right)=-1[/tex]                 [tex][\because \log_aa=1][/tex]

Therefore, the value of [tex]\log_{\frac{3}{4}}\left(\dfrac{4}{3}\right)[/tex] is -1.

19. We have,

[tex]2^{\log_2100}[/tex]

Using property of logarithms, we get

[tex]2^{\log_2100}=100[/tex]          [tex][\because a^{\log_ax}=x][/tex]

Therefore, the value of [tex]2^{\log_2100}[/tex] is 100.