Respuesta :
Given:
ABC is an isosceles triangle in which AC =BC.
D and E are points on BC and AC such that CE=CD.
To prove:
Triangle ACD and BCE are congruent.
Solution:
In triangle ACD and BCE,
[tex]AC=BC[/tex] (Given)
[tex]AC\cong BC[/tex]
[tex]\angle C\cong m\angle C[/tex] (Common angle)
[tex]CD=CE[/tex] (Given)
[tex]CD\cong CE[/tex]
In triangles ACD and BCE two corresponding sides and one included angle are congruent. So, the triangles are congruent by SAS congruence postulate.
[tex]\Delta ACD\cong \Delta BCE[/tex] (SAS congruence postulate)
Hence proved.

Answer:
Given ABC is an isosceles triangle with AB=AC .D and E are the point on BC such that BE=CD
- Given AB=AC
∴∠ABD=∠ACE (opposite angle of sides of a triangle ) ....(1)
- Given BE=CD
Then BE−DE=CD−DE
ORBC=CE......................................(2)
In ΔABD and ΔACE
∠ABD=∠ACE ( From 1)
BC=CE (from 2)
AB=AC ( GIven)
∴ΔABD≅ΔACE
So AD=AE [henceproved]