Respuesta :

Given:

ABC is an isosceles triangle in which AC =BC.

D and E are points on BC and AC such that CE=CD.

To prove:

Triangle ACD and BCE are congruent​.

Solution:

In triangle ACD and BCE,

[tex]AC=BC[/tex]                  (Given)

[tex]AC\cong BC[/tex]

[tex]\angle C\cong m\angle C[/tex]                  (Common angle)

[tex]CD=CE[/tex]                  (Given)

[tex]CD\cong CE[/tex]

In triangles ACD and BCE two corresponding sides and one included angle are congruent. So, the triangles are congruent by SAS congruence postulate.

[tex]\Delta ACD\cong \Delta BCE[/tex]           (SAS congruence postulate)

Hence proved.

Ver imagen erinna

Answer:

Given ABC is an isosceles triangle with AB=AC .D and E are the point on BC such that BE=CD

  • Given AB=AC

∴∠ABD=∠ACE (opposite angle of sides of a triangle ) ....(1)

  • Given BE=CD

Then BE−DE=CD−DE

ORBC=CE......................................(2)

In ΔABD and ΔACE

∠ABD=∠ACE ( From 1)

BC=CE (from 2)

AB=AC ( GIven)

∴ΔABD≅ΔACE

So AD=AE [henceproved]