Respuesta :
Answer:
[tex] \rm\displaystyle \frac{ {x}^{3} }{3} + 10 {x}^{2} + 100 x + \rm C[/tex]
Step-by-step explanation:
we would like to integrate the following integration:
[tex] \displaystyle \int (x + 10 {)}^{2} dx[/tex]
to do so simplify the integrand by using algebraic identity which yields:
[tex] \displaystyle \int {x}^{2} + 20x + 100 dx[/tex]
by sum integration we obtain:
[tex] \rm\displaystyle \int {x}^{2}dx + \int20x dx+ \int 100 dx[/tex]
remember that,
[tex] \displaystyle \int cxdx = c \int xdx[/tex]
so,we acquire:
[tex] \rm\displaystyle \int {x}^{2}dx + 20\int x dx+ \int 100 dx[/tex]
use exponent integration rule which yields:
[tex] \rm\displaystyle \frac{ {x}^{3} }{3} + 20 \frac{ {x}^{2} }{2} + \int 100 dx[/tex]
use constant integration rule which yields:
[tex] \rm\displaystyle \frac{ {x}^{3} }{3} + 20 \frac{ {x}^{2} }{2} + 100 x[/tex]
simplify:
[tex] \rm\displaystyle \frac{ {x}^{3} }{3} + 10 {x}^{2} + 100 x[/tex]
and we of course have to add the constant of integration:
[tex] \rm\displaystyle \frac{ {x}^{3} }{3} + 10 {x}^{2} + 100 x + \rm C[/tex]
Answer:
[tex]\displaystyle \int {(x + 10)^2} \, dx = \frac{(x + 10)^3}{3} + C[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- Indefinite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
U-Substitution
Step-by-step explanation:
*Note:
The answer below me is correct, but there is a simpler method to obtain the answer.
Step 1: Define
Identify
[tex]\displaystyle \int {(x + 10)^2} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = x + 10[/tex]
- [u] Differentiate [Basic Power Rule]: [tex]\displaystyle du = dx[/tex]
Step 3: Integrate Pt. 2
- [Integral] U-Substitution: [tex]\displaystyle \int {(x + 10)^2} \, dx = \int {u^2} \, du[/tex]
- [Integral] Reverse Power Rule: [tex]\displaystyle \int {(x + 10)^2} \, dx = \frac{u^3}{3} + C[/tex]
- Back-Substitute: [tex]\displaystyle \int {(x + 10)^2} \, dx = \frac{(x + 10)^3}{3} + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e