Respuesta :
Answer:
[tex] \displaystyle f'(x) = 2 {x} [/tex]
Step-by-step explanation:
we would like to differentiate the following:
[tex] \displaystyle f(x) = {x}^{2} [/tex]
take derivative In both sides:
[tex] \displaystyle f'(x) = \frac{d}{dx} {x}^{2} [/tex]
use exponent derivation rule:
[tex] \displaystyle f'(x) = 2 {x}^{2 - 1} [/tex]
simplify substraction:
[tex] \displaystyle f'(x) = 2 {x}^{1} [/tex]
by law of exponent we obtain:
[tex] \displaystyle f'(x) = 2 {x} [/tex]
and we are done!
Answer:
f'(x) = 2x
Step-by-step explanation:
Using the power rule
[tex]\frac{d}{dx}[/tex] (a[tex]x^{n}[/tex] ) = na[tex]x^{n-1}[/tex]
f(x) = x²
f'(x) = 2.1 [tex]x^{2-1}[/tex] = 2x