Respuesta :

Nayefx

Answer:

[tex] \displaystyle f'(x) = 2 {x} [/tex]

Step-by-step explanation:

we would like to differentiate the following:

[tex] \displaystyle f(x) = {x}^{2} [/tex]

take derivative In both sides:

[tex] \displaystyle f'(x) = \frac{d}{dx} {x}^{2} [/tex]

use exponent derivation rule:

[tex] \displaystyle f'(x) = 2 {x}^{2 - 1} [/tex]

simplify substraction:

[tex] \displaystyle f'(x) = 2 {x}^{1} [/tex]

by law of exponent we obtain:

[tex] \displaystyle f'(x) = 2 {x} [/tex]

and we are done!

Answer:

f'(x) = 2x

Step-by-step explanation:

Using the power rule

[tex]\frac{d}{dx}[/tex] (a[tex]x^{n}[/tex] ) = na[tex]x^{n-1}[/tex]

f(x) = x²

f'(x) = 2.1 [tex]x^{2-1}[/tex] = 2x