Answer:
[tex]x = 3 + i\ or\ x = 3 - i[/tex]
Step-by-step explanation:
Given
[tex]x = \frac{-(-6) \± \sqrt{(-6)^2 - 4(1)(10)}}{2*1}[/tex]
Required
Solve, in terms of i
We have:
[tex]x = \frac{-(-6) \± \sqrt{(-6)^2 - 4(1)(10)}}{2*1}[/tex]
Solve the expressions in bracket
[tex]x = \frac{-(-6) \± \sqrt{36 - 40}}{2*1}[/tex]
[tex]x = \frac{-(-6) \± \sqrt{-4}}{2}[/tex]
Express -4 as 4 * -1
[tex]x = \frac{-(-6) \± \sqrt{-4*1}}{2}[/tex]
Split
[tex]x = \frac{-(-6) \± \sqrt{4}*\sqrt{-1}}{2}[/tex]
In complex numbers;
[tex]i = \sqrt{-1[/tex]
So, we have:
[tex]x = \frac{-(-6) \± 2*i}{2}[/tex]
[tex]x = \frac{6 \± 2i}{2}[/tex]
Factorize
[tex]x = \frac{2(3 \± i)}{2}[/tex]
[tex]x = 3 \± i[/tex]
Split
[tex]x = 3 + i\ or\ x = 3 - i[/tex]