Respuesta :

Given:

Amplitude = 2

Midline = 5

Period of [tex]\dfrac{3\pi}{4}[/tex].

To find:

The cosine function.

Solution:

The general cosine function is:

[tex]f(x)=A\cos(Bx+C)+D[/tex]            ...(i)

Where, |A| is amplitude, [tex]\dfrac{2\pi}{B}[/tex] is period, [tex]-\dfrac{C}{B}[/tex] is phase shift and D is the mid line.

Period of function is [tex]\dfrac{3\pi}{4}[/tex]. So,

[tex]\dfrac{3\pi}{4}=\dfrac{2\pi}{B}[/tex]

[tex]B=2\pi\times \dfrac{4}{3\pi}[/tex]

[tex]B=\dfrac{8}{3}[/tex]

Substituting [tex]A=2,\ B=\dfrac{8}{3},\ C=0,\ D=5[/tex] in (i), we get

[tex]f(x)=2\cos(\dfrac{8}{3}x+0)+5[/tex]

[tex]f(x)=2\cos(\dfrac{8}{3}x)+5[/tex]

Therefore, the required cosine function is [tex]f(x)=2\cos(\dfrac{8}{3}x)+5[/tex].