Answer:
The translated ordered pairs are [tex]P_{1}'(x,y) = (0, 5)[/tex] and [tex]P_{2}' (x,y) = (12, -9)[/tex].
Step-by-step explanation:
Vectorially speaking, a translation is defined by the following formula:
[tex]P'(x,y) = P(x,y) + T(x,y)[/tex] (1)
Where:
[tex]P(x,y)[/tex] - Original point.
[tex]P'(x,y)[/tex] - Translated point.
[tex]T(x,y)[/tex] - Translation vector.
If we know that [tex]P_{1}(x,y) = (-3, 6)[/tex], [tex]P_{2} (x,y) = (9, -8)[/tex] and [tex]T(x,y) = (3, -1)[/tex], then the translated points are, respectively:
[tex]P_{1}'(x,y) = (-3, 6) + (3,-1)[/tex]
[tex]P_{1}'(x,y) = (0, 5)[/tex]
[tex]P'_{2}(x,y) = (9,-8) + (3, -1)[/tex]
[tex]P_{2}' (x,y) = (12, -9)[/tex]
The translated ordered pairs are [tex]P_{1}'(x,y) = (0, 5)[/tex] and [tex]P_{2}' (x,y) = (12, -9)[/tex].