Answer:
The right answer is "0.7823".
Step-by-step explanation:
Given that,
P = 42%
or,
= 0.42
n = 375
[tex]\hat{P}[/tex] = 0.4
The z-score will be:
= [tex]\frac{\hat{P}-\mu_P}{\sigma_p}[/tex]
By putting the values, we get
= [tex]\frac{0.4-0.42}{\sqrt{\frac{0.42\times (1-0.42)}{0.375} } }[/tex]
= [tex]-0.784706[/tex]
hence,
The probability will be:
⇒ [tex]P(\hat {P}>0.04)[/tex] = [tex]P(z>-0.7847)[/tex]
= [tex]1-P(z<-0.7847)[/tex]
= [tex]1-0.21770[/tex]
= [tex]0.7823[/tex]