Which point would not be a solution to the system of linear inequalities shown below? y\ge x+5\hspace{50px}y\ge\frac{2}{3} x+6 y≥x+5y≥ 3 2 ​ x+6 (12, 7) (-12, 1) (-12, 9) (-12, 6)

Respuesta :

Answer:

(12,7) is not a solution

Step-by-step explanation:

Given

[tex]y\ge x+5\hspace{50px}y\ge\frac{2}{3}x + 6[/tex]

Required

Point that is not a solution

We have:

[tex]y\ge x+5\hspace{50px}y\ge\frac{2}{3}x + 6[/tex]

Substitute [tex]\frac{2}{3}x + 6[/tex] for y in the first inequality

[tex]\frac{2}{3}x + 6 \ge x + 5[/tex]

Collect like terms

[tex]\frac{2}{3}x - x \ge 5-6[/tex]

[tex]-\frac{1}{3}x \ge -1[/tex]

Solve for x (the inequality will change because we are to divide by a  negative number_

[tex]x \le -1/-\frac{1}{3}[/tex]

[tex]x \le 3[/tex]

Without solving further, we can conclude that the first option is not a solution.

Because (12,7) implies that [tex]x =12[/tex]

Compare [tex]x =12[/tex] to [tex]x \le 3[/tex], then [tex]x \le 3[/tex] is false