Answer:
(12,7) is not a solution
Step-by-step explanation:
Given
[tex]y\ge x+5\hspace{50px}y\ge\frac{2}{3}x + 6[/tex]
Required
Point that is not a solution
We have:
[tex]y\ge x+5\hspace{50px}y\ge\frac{2}{3}x + 6[/tex]
Substitute [tex]\frac{2}{3}x + 6[/tex] for y in the first inequality
[tex]\frac{2}{3}x + 6 \ge x + 5[/tex]
Collect like terms
[tex]\frac{2}{3}x - x \ge 5-6[/tex]
[tex]-\frac{1}{3}x \ge -1[/tex]
Solve for x (the inequality will change because we are to divide by a negative number_
[tex]x \le -1/-\frac{1}{3}[/tex]
[tex]x \le 3[/tex]
Without solving further, we can conclude that the first option is not a solution.
Because (12,7) implies that [tex]x =12[/tex]
Compare [tex]x =12[/tex] to [tex]x \le 3[/tex], then [tex]x \le 3[/tex] is false