Respuesta :
Answer:
D) [tex](-2,-9)[/tex]
Step-by-step explanation:
Vertex Form of a Vertical Parabola:
[tex]y=a(x-h)^2+k[/tex]
Vertex -> [tex](h,k)[/tex]
Axis of Symmetry -> [tex]x=h[/tex]
Vertical Scale Factor -> [tex]a[/tex]
- To turn [tex]f(x)=x^2+4x-5[/tex] into vertex form, we need to complete the square on the right side
- Therefore, if [tex]f(x)=0[/tex], then [tex]0+9=x^2+4x-5+9[/tex] completes the square on the right side
- This becomes [tex]9=(x+2)^2[/tex]
- This means that our function in vertex form is [tex]f(x)=(x+2)^2-9[/tex]
Therefore, the vertex of the graph is [tex](h,k)=(-2,-9)[/tex].