The axis of symmetry for a function in the form f(x) = x2 + 4x − 5 is x = −2. What are the coordinates of the vertex of the graph?

(−9, −2)
(−17, −2)
(−2, −17)
(−2, −9)

Respuesta :

Answer:

D) [tex](-2,-9)[/tex]

Step-by-step explanation:

Vertex Form of a Vertical Parabola:

[tex]y=a(x-h)^2+k[/tex]

Vertex -> [tex](h,k)[/tex]

Axis of Symmetry -> [tex]x=h[/tex]

Vertical Scale Factor -> [tex]a[/tex]

  • To turn [tex]f(x)=x^2+4x-5[/tex] into vertex form, we need to complete the square on the right side
  • Therefore, if [tex]f(x)=0[/tex], then [tex]0+9=x^2+4x-5+9[/tex] completes the square on the right side
  • This becomes [tex]9=(x+2)^2[/tex]
  • This means that our function in vertex form is [tex]f(x)=(x+2)^2-9[/tex]

Therefore, the vertex of the graph is [tex](h,k)=(-2,-9)[/tex].

Answer:

d

Step-by-step explanation: