Respuesta :

Answer:

[tex]y = -3x + 14[/tex]

Step-by-step explanation:

Required

The equation of line

perpendicular to : [tex]x -3y =9[/tex]

Passes through [tex](3,5)[/tex]

We have:

[tex]x -3y =9[/tex]

Make y the subject

[tex]3y =x - 9[/tex]

Solve for y

[tex]y = \frac{x}{3} - 3[/tex]

Compare the above equation to [tex]y = mx + c[/tex]

[tex]m =\frac{1}{3}[/tex] ---- This represents the slope

Since the line is perpendicular to [tex]x -3y =9[/tex], then its slope is:

[tex]m_2 = -\frac{1}{m}[/tex]

[tex]m_2 = -\frac{1}{1/3}[/tex]

[tex]m_2 =-3[/tex]

The equation of the perpendicular line is:

[tex]y =m_2(x - x_1) + y_1[/tex]

Where:

[tex]m_2 =-3[/tex]

[tex](x_1,y_1) =[/tex] [tex](3,5)[/tex]

So:

[tex]y = -3(x - 3) + 5[/tex]

[tex]y = -3x + 9 + 5[/tex]

[tex]y = -3x + 14[/tex]