In \triangle JKL,△JKL, \overline{KL}\cong \overline{JK} KL ≅ JK and \text{m}\angle J = 17^{\circ}.M∠J=17 ∘ . Find \text{m}\angle K.M∠K.

Respuesta :

Answer:

m<K = [tex]146^{o}[/tex]

Step-by-step explanation:

With the given conditions in the question, it would be observed that ΔJKL is an isosceles, since KL ≅ JK. So that JL is the base of the triangle:

m<J ≅ m<L = [tex]17^{o}[/tex] (base angle of an isosceles triangle are equal)

Then;

m<J + m<K + m<L = [tex]180^{o}[/tex] (sum of angles in a triangle)

[tex]17^{o}[/tex] + m<K + [tex]17^{o}[/tex] = [tex]180^{o}[/tex]

m<K + 34 = [tex]180^{o}[/tex]

m<K  = [tex]180^{o}[/tex] - 34

m<K = [tex]146^{o}[/tex]

Thus, with respect to the given question, the measure of angle K is [tex]146^{o}[/tex]. Which is an obtuse angle of the triangle JKL.